Dendrite‐Free 3D Lithium Metal Anode Formed in a Cellulose Based Separator for Lithium‐Metal Batteries

نویسندگان

چکیده

Abstract Lithium metal is the best candidate anode for high specific energy density batteries because of its capacity and low negative potential. However, lithium dendrite formation growth during plating stripping cycles have hindered use as practical batteries. Here, a mechanism suppression in composite separator Kimwipe paper (KW) porous polyethylene (PE) various electrolytes was examined. The Li/KW/PE electrode an electrolyte 1 m Li(CFSO 3 ) 2 N (LiFSI) 1,4, dioxane (DX)‐1,2 dimethoylethane (DME) (1 : v/v) with wide electrochemical window successfully cycled without short‐circuiting at 5 mA cm −2 25 °C 10 h over cycles. deposited into cellulose fiber network process, which resulted three‐dimensional (3D) electrode. Whereas, KW PE not effective to suppress conventional carbonate based LiPF 6 ethylene carbonate‐dimethyl carbonate.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nanoporous metal recuperated MnO2 anode for lithium ion batteries.

Lithium-ion batteries (LIBs) have been intensively studied to meet the increased demands for the high energy density of portable electronics and electric vehicles. The low specific capacity of the conventional graphite based anodes is one of the key factors that limit the capacity of LIBs. Transition metal oxides, such as NiO, MnO2 and Fe3O4, are known to be promising anode materials that are e...

متن کامل

A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries

Dendritic Li deposition has been "a Gordian knot" for almost half a century, which significantly hinders the practical use of high-energy lithium metal batteries (LMBs). The underlying mechanisms of this dendrite formation are related to the preferential lithium deposition on the tips of the protuberances of the anode surface and also associated with the concentration gradient or even depletion...

متن کامل

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

A Highly Reversible Lithium Metal Anode

Lithium metal has shown a lot of promise for use as an anode material in rechargeable batteries owing to its high theoretical capacity. However, it does not meet the cycle life and safety requirements of rechargeable batteries owing to electrolyte decomposition and dendrite formation on the surfaces of the lithium anodes during electrochemical cycling. Here, we propose a novel electrolyte syste...

متن کامل

Electrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)

PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ChemElectroChem

سال: 2022

ISSN: ['2196-0216']

DOI: https://doi.org/10.1002/celc.202201043